Wednesday, April 7, 2021

Tugas 3. RANGKUMAN GERBANG LOGIKA DAN ALJABAR BOLEAN

 

"GERBANG LOGIKA DAN ALJABAR BOLEAN"

    kita akan mempelajari cara menggambarkan bagaimana sistem menggunakan menggunakan level logika biner dalam membuat keputusan.Aljabar Boolean adalah alat yang penting dalam menggambarkan, menganalisa, merancang, dan mengimplementasikan rangkaian digital.

Konstanta Boolean dan Variabel.
  • Aljabar Boolean dibawah ini hanya mempunyai dua nilai : 0 dan 1.
  • Logika 0 dapat dikatakan : false, off, low, no, saklar terbuka.
  • Logika 1 dapat dikatakan: true, on, high, yes, saklar tertutup.
  • Tiga operasi logika dasar: OR, AND, dan NOT.

Tabel Kebenaran:

Sebuah tabel kebenaran menggambarkan hubungan antara input dan ouput sebuah rangkaian logika.Jumlah The number of entries corresponds to the number of inputs. For example a 2 input table would have 2 2 = 4 entries. A 3 input table would have 2 3 = 8 entries

Contoh tabel kebenaran dengan masukan 2, 3 dan 4 buah.

Operasi OR dengan gerbang OR

The Boolean expression for the OR operation is:
  •        X = A + B
  •        This is read as “x equals A or B.”
  •        X = 1 when A = 1 or B = 1.
Truth table and circuit symbol for a two input OR gate:


OR Operation With OR Gates

The OR operation is similar to addition but when A = 1 and B = 1, the OR operation produces 1 + 1 = 1.
In the Boolean expression:
    x=1+1+1=1 
    We could say in English that x is true (1) when A is true (1) OR B is true (1) OR C is true (1).
There are many examples of applications where an output function is desired when one of multiple inputs is activated.



AND Operations with AND gates

The Boolean expression for the AND operation is
  •     X = A • B
  •     This is read as “x equals A and B.” 
  •     x = 1 when A = 1 and B = 1. 

Truth table and circuit symbol for a two input AND gate are shown. Notice the difference between OR and AND gates.

Operation With AND Gates

The AND operation is similar to multiplication. In the Boolean expression 
    X = A • B • C 
    X = 1only when A = 1, B = 1, and C = 1. 


NOT Operation
The Boolean expression for the NOT operation is
    X = A

This is read as:
  •     x equals NOT A, or
  •     x equals the inverse of A, or 
  •     x equals the complement of A
Truth table, symbol, and sample waveform for the NOT circuit.



Describing Logic Circuits Algebraically
  • The three basic Boolean operations (OR, AND, NOT) can describe any logic circuit.
  • If an expression contains both AND and OR gates the AND operation will be performed first, unless there is a parenthesis in the expression. 
  • Examples of Boolean expressions for logic circuits:

  •     The output of an inverter is equivalent to the input with a bar over it. Input A through an inverter equals A. 
  •     Examples using inverters.
Evaluating Logic Circuit Outputs :
  • Rules for evaluating a Boolean expression:
  • Perform all inversions of single terms. 
  • Perform all operations within parenthesis. 
  • Perform AND operation before an OR operation unless parenthesis indicate otherwise. 
  • If an expression has a bar over it, perform the operations inside the expression and then invert the result.
  • Evaluate Boolean expressions by substituting values and performing the indicated operations:


NOR Gates and NAND Gates

  • Combine basic AND, OR, and NOT operations.
  • The NOR gate is an inverted OR gate. An inversion “bubble” is placed at the output of the OR gate.
  • The Boolean expression is, 
  • The NAND gate is an inverted AND gate. An inversion “bubble” is placed at the output of the AND gate. 
  • The Boolean expression is
  • The output of NAND and NOR gates may be found by simply determining the output of an AND or OR gate and inverting it.
  • The truth tables for NOR and NAND gates show the complement of truth tables for OR and AND gates.
Universality of NAND and NOR Gates
  •  NAND or NOR gates can be used to create the three basic logic expressions (OR, AND, and INVERT)
  • This characteristic provides flexibility and is very useful in logic circuit design.


Combinations of NANDs are used to create the three logic functions.


combinations of NORs are used to create the three logic functions.


The Exclusive OR





IEEE/ANSI Standard Logic Symbols
Compare the IEEE/ANSI symbols to traditional symbols.These symbols are not widely accepted but may appear in some schematics.  




Application










No comments:

Post a Comment

Jawaban Uas

  Sumber Informasi :  https://onlinelearning.uhamka.ac.id